Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Nat Commun ; 15(1): 3567, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38670973

RESUMEN

The emergence of retinal progenitor cells and differentiation to various retinal cell types represent fundamental processes during retinal development. Herein, we provide a comprehensive single cell characterisation of transcriptional and chromatin accessibility changes that underline retinal progenitor cell specification and differentiation over the course of human retinal development up to midgestation. Our lineage trajectory data demonstrate the presence of early retinal progenitors, which transit to late, and further to transient neurogenic progenitors, that give rise to all the retinal neurons. Combining single cell RNA-Seq with spatial transcriptomics of early eye samples, we demonstrate the transient presence of early retinal progenitors in the ciliary margin zone with decreasing occurrence from 8 post-conception week of human development. In retinal progenitor cells, we identified a significant enrichment for transcriptional enhanced associate domain transcription factor binding motifs, which when inhibited led to loss of cycling progenitors and retinal identity in pluripotent stem cell derived organoids.


Asunto(s)
Diferenciación Celular , Retina , Análisis de la Célula Individual , Células Madre , Humanos , Análisis de la Célula Individual/métodos , Retina/citología , Retina/metabolismo , Células Madre/citología , Células Madre/metabolismo , Organoides/metabolismo , Organoides/citología , Regulación del Desarrollo de la Expresión Génica , Cromatina/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , RNA-Seq , Linaje de la Célula , Transcriptoma
2.
J Med Genet ; 61(3): 250-261, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38050128

RESUMEN

BACKGROUND: Classic aniridia is a highly penetrant autosomal dominant disorder characterised by congenital absence of the iris, foveal hypoplasia, optic disc anomalies and progressive opacification of the cornea. >90% of cases of classic aniridia are caused by heterozygous, loss-of-function variants affecting the PAX6 locus. METHODS: Short-read whole genome sequencing was performed on 51 (39 affected) individuals from 37 different families who had screened negative for mutations in the PAX6 coding region. RESULTS: Likely causative mutations were identified in 22 out of 37 (59%) families. In 19 out of 22 families, the causative genomic changes have an interpretable deleterious impact on the PAX6 locus. Of these 19 families, 1 has a novel heterozygous PAX6 frameshift variant missed on previous screens, 4 have single nucleotide variants (SNVs) (one novel) affecting essential splice sites of PAX6 5' non-coding exons and 2 have deep intronic SNV (one novel) resulting in gain of a donor splice site. In 12 out of 19, the causative variants are large-scale structural variants; 5 have partial or whole gene deletions of PAX6, 3 have deletions encompassing critical PAX6 cis-regulatory elements, 2 have balanced inversions with disruptive breakpoints within the PAX6 locus and 2 have complex rearrangements disrupting PAX6. The remaining 3 of 22 families have deletions encompassing FOXC1 (a known cause of atypical aniridia). Seven of the causative variants occurred de novo and one cosegregated with familial aniridia. We were unable to establish inheritance status in the remaining probands. No plausibly causative SNVs were identified in PAX6 cis-regulatory elements. CONCLUSION: Whole genome sequencing proves to be an effective diagnostic test in most individuals with previously unexplained aniridia.


Asunto(s)
Aniridia , Anomalías del Ojo , Humanos , Factor de Transcripción PAX6/genética , Aniridia/genética , Mutación/genética , Anomalías del Ojo/genética , Exones , Proteínas de Homeodominio/genética , Proteínas del Ojo/genética , Linaje
3.
Nature ; 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057666

RESUMEN

Human limbs emerge during the fourth post-conception week as mesenchymal buds, which develop into fully formed limbs over the subsequent months1. This process is orchestrated by numerous temporally and spatially restricted gene expression programmes, making congenital alterations in phenotype common2. Decades of work with model organisms have defined the fundamental mechanisms underlying vertebrate limb development, but an in-depth characterization of this process in humans has yet to be performed. Here we detail human embryonic limb development across space and time using single-cell and spatial transcriptomics. We demonstrate extensive diversification of cells from a few multipotent progenitors to myriad differentiated cell states, including several novel cell populations. We uncover two waves of human muscle development, each characterized by different cell states regulated by separate gene expression programmes, and identify musculin (MSC) as a key transcriptional repressor maintaining muscle stem cell identity. Through assembly of multiple anatomically continuous spatial transcriptomic samples using VisiumStitcher, we map cells across a sagittal section of a whole fetal hindlimb. We reveal a clear anatomical segregation between genes linked to brachydactyly and polysyndactyly, and uncover transcriptionally and spatially distinct populations of the mesenchyme in the autopod. Finally, we perform single-cell RNA sequencing on mouse embryonic limbs to facilitate cross-species developmental comparison, finding substantial homology between the two species.

4.
Development ; 150(15)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37306293

RESUMEN

Specification of the eye field (EF) within the neural plate marks the earliest detectable stage of eye development. Experimental evidence, primarily from non-mammalian model systems, indicates that the stable formation of this group of cells requires the activation of a set of key transcription factors. This crucial event is challenging to probe in mammals and, quantitatively, little is known regarding the regulation of the transition of cells to this ocular fate. Using optic vesicle organoids to model the onset of the EF, we generate time-course transcriptomic data allowing us to identify dynamic gene expression programmes that characterize this cellular-state transition. Integrating this with chromatin accessibility data suggests a direct role of canonical EF transcription factors in regulating these gene expression changes, and highlights candidate cis-regulatory elements through which these transcription factors act. Finally, we begin to test a subset of these candidate enhancer elements, within the organoid system, by perturbing the underlying DNA sequence and measuring transcriptomic changes during EF activation.


Asunto(s)
Ojo , Factores de Transcripción , Animales , Ojo/metabolismo , Factores de Transcripción/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Secuencia de Bases , Organoides/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mamíferos/genética
5.
N Engl J Med ; 388(17): 1559-1571, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37043637

RESUMEN

BACKGROUND: Pediatric disorders include a range of highly penetrant, genetically heterogeneous conditions amenable to genomewide diagnostic approaches. Finding a molecular diagnosis is challenging but can have profound lifelong benefits. METHODS: We conducted a large-scale sequencing study involving more than 13,500 families with probands with severe, probably monogenic, difficult-to-diagnose developmental disorders from 24 regional genetics services in the United Kingdom and Ireland. Standardized phenotypic data were collected, and exome sequencing and microarray analyses were performed to investigate novel genetic causes. We developed an iterative variant analysis pipeline and reported candidate variants to clinical teams for validation and diagnostic interpretation to inform communication with families. Multiple regression analyses were performed to evaluate factors affecting the probability of diagnosis. RESULTS: A total of 13,449 probands were included in the analyses. On average, we reported 1.0 candidate variant per parent-offspring trio and 2.5 variants per singleton proband. Using clinical and computational approaches to variant classification, we made a diagnosis in approximately 41% of probands (5502 of 13,449). Of 3599 probands in trios who received a diagnosis by clinical assertion, approximately 76% had a pathogenic de novo variant. Another 22% of probands (2997 of 13,449) had variants of uncertain significance in genes that were strongly linked to monogenic developmental disorders. Recruitment in a parent-offspring trio had the largest effect on the probability of diagnosis (odds ratio, 4.70; 95% confidence interval [CI], 4.16 to 5.31). Probands were less likely to receive a diagnosis if they were born extremely prematurely (i.e., 22 to 27 weeks' gestation; odds ratio, 0.39; 95% CI, 0.22 to 0.68), had in utero exposure to antiepileptic medications (odds ratio, 0.44; 95% CI, 0.29 to 0.67), had mothers with diabetes (odds ratio, 0.52; 95% CI, 0.41 to 0.67), or were of African ancestry (odds ratio, 0.51; 95% CI, 0.31 to 0.78). CONCLUSIONS: Among probands with severe, probably monogenic, difficult-to-diagnose developmental disorders, multimodal analysis of genomewide data had good diagnostic power, even after previous attempts at diagnosis. (Funded by the Health Innovation Challenge Fund and Wellcome Sanger Institute.).


Asunto(s)
Genómica , Enfermedades Raras , Niño , Humanos , Exoma , Irlanda/epidemiología , Reino Unido/epidemiología , Enfermedades Raras/diagnóstico , Enfermedades Raras/epidemiología , Enfermedades Raras/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Estudios de Asociación Genética , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Anomalías Congénitas/diagnóstico , Anomalías Congénitas/genética , Trastornos del Crecimiento/diagnóstico , Trastornos del Crecimiento/genética , Facies , Trastornos de la Conducta Infantil/diagnóstico , Trastornos de la Conducta Infantil/genética , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/genética
6.
J Med Genet ; 60(8): 810-818, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36669873

RESUMEN

BACKGROUND: Genomic variant prioritisation is one of the most significant bottlenecks to mainstream genomic testing in healthcare. Tools to improve precision while ensuring high recall are critical to successful mainstream clinical genomic testing, in particular for whole genome sequencing where millions of variants must be considered for each patient. METHODS: We developed EyeG2P, a publicly available database and web application using the Ensembl Variant Effect Predictor. EyeG2P is tailored for efficient variant prioritisation for individuals with inherited ophthalmic conditions. We assessed the sensitivity of EyeG2P in 1234 individuals with a broad range of eye conditions who had previously received a confirmed molecular diagnosis through routine genomic diagnostic approaches. For a prospective cohort of 83 individuals, we assessed the precision of EyeG2P in comparison with routine diagnostic approaches. For 10 additional individuals, we assessed the utility of EyeG2P for whole genome analysis. RESULTS: EyeG2P had 99.5% sensitivity for genomic variants previously identified as clinically relevant through routine diagnostic analysis (n=1234 individuals). Prospectively, EyeG2P enabled a significant increase in precision (35% on average) in comparison with routine testing strategies (p<0.001). We demonstrate that incorporation of EyeG2P into whole genome sequencing analysis strategies can reduce the number of variants for analysis to six variants, on average, while maintaining high diagnostic yield. CONCLUSION: Automated filtering of genomic variants through EyeG2P can increase the efficiency of diagnostic testing for individuals with a broad range of inherited ophthalmic disorders.


Asunto(s)
Bases de Datos Genéticas , Oftalmopatías , Pruebas Genéticas , Genoma Humano , Genómica , Oftalmopatías/genética , Humanos , Variación Genética
8.
HGG Adv ; 4(1): 100162, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36561149

RESUMEN

Diagnosing rare developmental disorders using genome-wide sequencing data commonly necessitates review of multiple plausible candidate variants, often using ontologies of categorical clinical terms. We show that Integrating Multiple Phenotype Resources Optimizes Variant Evaluation in Developmental Disorders (IMPROVE-DD) by incorporating additional classes of data commonly available to clinicians and recorded in health records. In doing so, we quantify the distinct contributions of sex, growth, and development in addition to Human Phenotype Ontology (HPO) terms and demonstrate added value from these readily available information sources. We use likelihood ratios for nominal and quantitative data and propose a classifier for HPO terms in this framework. This Bayesian framework results in more robust diagnoses. Using data systematically collected in the Deciphering Developmental Disorders study, we considered 77 genes with pathogenic/likely pathogenic variants in ≥10 individuals. All genes showed at least a satisfactory prediction by receiver operating characteristic when testing on training data (AUC ≥ 0.6), and HPO terms were the best predictor for the majority of genes, though a minority (13/77) of genes were better predicted by other phenotypic data types. Overall, classifiers based upon multiple integrated phenotypic data sources performed better than those based upon any individual source, and importantly, integrated models produced notably fewer false positives. Finally, we show that IMPROVE-DD models with good predictive performance on cross-validation can be constructed from relatively few individuals. This suggests new strategies for candidate gene prioritization and highlights the value of systematic clinical data collection to support diagnostic programs.


Asunto(s)
Discapacidades del Desarrollo , Genoma , Niño , Humanos , Discapacidades del Desarrollo/diagnóstico , Teorema de Bayes , Fenotipo , Enfermedades Raras/diagnóstico
9.
PLoS One ; 17(11): e0268149, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36413568

RESUMEN

Classical aniridia is a congenital and progressive panocular disorder almost exclusively caused by heterozygous loss-of-function variants at the PAX6 locus. We report nine individuals from five families with severe aniridia and/or microphthalmia (with no detectable PAX6 mutation) with ultrarare monoallelic missense variants altering the Arg51 codon of MAB21L1. These mutations occurred de novo in 3/5 families, with the remaining families being compatible with autosomal dominant inheritance. Mice engineered to carry the p.Arg51Leu change showed a highly-penetrant optic disc anomaly in heterozygous animals with severe microphthalmia in homozygotes. Substitutions of the same codon (Arg51) in MAB21L2, a close homolog of MAB21L1, cause severe ocular and skeletal malformations in humans and mice. The predicted nucleotidyltransferase function of MAB21L1 could not be demonstrated using purified protein with a variety of nucleotide substrates and oligonucleotide activators. Induced expression of GFP-tagged wildtype and mutant MAB21L1 in human cells caused only modest transcriptional changes. Mass spectrometry of immunoprecipitated protein revealed that both mutant and wildtype MAB21L1 associate with transcription factors that are known regulators of PAX6 (MEIS1, MEIS2 and PBX1) and with poly(A) RNA binding proteins. Arg51 substitutions reduce the association of wild-type MAB21L1 with TBL1XR1, a component of the NCoR complex. We found limited evidence for mutation-specific interactions with MSI2/Musashi-2, an RNA-binding proteins with effects on many different developmental pathways. Given that biallelic loss-of-function variants in MAB21L1 result in a milder eye phenotype we suggest that Arg51-altering monoallelic variants most plausibly perturb eye development via a gain-of-function mechanism.


Asunto(s)
Aniridia , Microftalmía , Humanos , Animales , Ratones , Microftalmía/genética , Factor de Transcripción PAX6/genética , Aniridia/genética , Mutación Missense , Heterocigoto , Factores de Transcripción/genética , Proteínas de Homeodominio/genética , Proteínas de Unión al ARN/genética , Proteínas del Ojo/genética , Péptidos y Proteínas de Señalización Intracelular/genética
10.
Genes (Basel) ; 13(10)2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36292683

RESUMEN

Anophthalmia (missing eye) describes a failure of early embryonic ocular development. Mutations in a relatively small set of genes account for 75% of bilateral anophthalmia cases, yet 25% of families currently are left without a molecular diagnosis. Here, we report our experimental work that aimed to uncover the developmental and genetic basis of the anophthalmia characterising the X-linked Ie (eye-ear reduction) X-ray-induced allele in mouse that was first identified in 1947. Histological analysis of the embryonic phenotype showed failure of normal eye development after the optic vesicle stage with particularly severe malformation of the ventral retina. Linkage analysis mapped this mutation to a ~6 Mb region on the X chromosome. Short- and long-read whole-genome sequencing (WGS) of affected and unaffected male littermates confirmed the Ie linkage but identified no plausible causative variants or structural rearrangements. These analyses did reduce the critical candidate interval and revealed evidence of multiple variants within the ancestral DNA, although none were found that altered coding sequences or that were unique to Ie. To investigate early embryonic events at a genetic level, we then generated mouse ES cells derived from male Ie embryos and wild type littermates. RNA-seq and accessible chromatin sequencing (ATAC-seq) data generated from cultured optic vesicle organoids did not reveal any large differences in gene expression or accessibility of putative cis-regulatory elements between Ie and wild type. However, an unbiased TF-footprinting analysis of accessible chromatin regions did provide evidence of a genome-wide reduction in binding of transcription factors associated with ventral eye development in Ie, and evidence of an increase in binding of the Zic-family of transcription factors, including Zic3, which is located within the Ie-refined critical interval. We conclude that the refined Ie critical region at chrX: 56,145,000-58,385,000 contains multiple genetic variants that may be linked to altered cis regulation but does not contain a convincing causative mutation. Changes in the binding of key transcription factors to chromatin causing altered gene expression during development, possibly through a subtle mis-regulation of Zic3, presents a plausible cause for the anophthalmia phenotype observed in Ie, but further work is required to determine the precise causative allele and its genetic mechanism.


Asunto(s)
Anoftalmos , Ratones , Masculino , Animales , Anoftalmos/genética , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cromatina , ADN , Proteínas de Homeodominio/genética
11.
Genome Med ; 14(1): 73, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35850704

RESUMEN

BACKGROUND: The majority of clinical genetic testing focuses almost exclusively on regions of the genome that directly encode proteins. The important role of variants in non-coding regions in penetrant disease is, however, increasingly being demonstrated, and the use of whole genome sequencing in clinical diagnostic settings is rising across a large range of genetic disorders. Despite this, there is no existing guidance on how current guidelines designed primarily for variants in protein-coding regions should be adapted for variants identified in other genomic contexts. METHODS: We convened a panel of nine clinical and research scientists with wide-ranging expertise in clinical variant interpretation, with specific experience in variants within non-coding regions. This panel discussed and refined an initial draft of the guidelines which were then extensively tested and reviewed by external groups. RESULTS: We discuss considerations specifically for variants in non-coding regions of the genome. We outline how to define candidate regulatory elements, highlight examples of mechanisms through which non-coding region variants can lead to penetrant monogenic disease, and outline how existing guidelines can be adapted for the interpretation of these variants. CONCLUSIONS: These recommendations aim to increase the number and range of non-coding region variants that can be clinically interpreted, which, together with a compatible phenotype, can lead to new diagnoses and catalyse the discovery of novel disease mechanisms.


Asunto(s)
Variación Genética , Estudio de Asociación del Genoma Completo , Genoma , Sistemas de Lectura Abierta , Secuencias Reguladoras de Ácidos Nucleicos
12.
Genet Med ; 24(8): 1732-1742, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35507016

RESUMEN

PURPOSE: Several groups and resources provide information that pertains to the validity of gene-disease relationships used in genomic medicine and research; however, universal standards and terminologies to define the evidence base for the role of a gene in disease and a single harmonized resource were lacking. To tackle this issue, the Gene Curation Coalition (GenCC) was formed. METHODS: The GenCC drafted harmonized definitions for differing levels of gene-disease validity on the basis of existing resources, and performed a modified Delphi survey with 3 rounds to narrow the list of terms. The GenCC also developed a unified database to display curated gene-disease validity assertions from its members. RESULTS: On the basis of 241 survey responses from the genetics community, a consensus term set was chosen for grading gene-disease validity and database submissions. As of December 2021, the database contained 15,241 gene-disease assertions on 4569 unique genes from 12 submitters. When comparing submissions to the database from distinct sources, conflicts in assertions of gene-disease validity ranged from 5.3% to 13.4%. CONCLUSION: Terminology standardization, sharing of gene-disease validity classifications, and resolution of curation conflicts will facilitate collaborations across international curation efforts and in turn, improve consistency in genetic testing and variant interpretation.


Asunto(s)
Bases de Datos Genéticas , Genómica , Pruebas Genéticas , Variación Genética , Humanos
13.
Am J Hum Genet ; 108(11): 2186-2194, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34626536

RESUMEN

Structural variation (SV) describes a broad class of genetic variation greater than 50 bp in size. SVs can cause a wide range of genetic diseases and are prevalent in rare developmental disorders (DDs). Individuals presenting with DDs are often referred for diagnostic testing with chromosomal microarrays (CMAs) to identify large copy-number variants (CNVs) and/or with single-gene, gene-panel, or exome sequencing (ES) to identify single-nucleotide variants, small insertions/deletions, and CNVs. However, individuals with pathogenic SVs undetectable by conventional analysis often remain undiagnosed. Consequently, we have developed the tool InDelible, which interrogates short-read sequencing data for split-read clusters characteristic of SV breakpoints. We applied InDelible to 13,438 probands with severe DDs recruited as part of the Deciphering Developmental Disorders (DDD) study and discovered 63 rare, damaging variants in genes previously associated with DDs missed by standard SNV, indel, or CNV discovery approaches. Clinical review of these 63 variants determined that about half (30/63) were plausibly pathogenic. InDelible was particularly effective at ascertaining variants between 21 and 500 bp in size and increased the total number of potentially pathogenic variants identified by DDD in this size range by 42.9%. Of particular interest were seven confirmed de novo variants in MECP2, which represent 35.0% of all de novo protein-truncating variants in MECP2 among DDD study participants. InDelible provides a framework for the discovery of pathogenic SVs that are most likely missed by standard analytical workflows and has the potential to improve the diagnostic yield of ES across a broad range of genetic diseases.


Asunto(s)
Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Secuenciación del Exoma/métodos , Niño , Femenino , Humanos , Masculino , Proteína 2 de Unión a Metil-CpG/genética
14.
PLoS One ; 16(8): e0256181, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34388204

RESUMEN

Identifying causative variants in cis-regulatory elements (CRE) in neurodevelopmental disorders has proven challenging. We have used in vivo functional analyses to categorize rigorously filtered CRE variants in a clinical cohort that is plausibly enriched for causative CRE mutations: 48 unrelated males with a family history consistent with X-linked intellectual disability (XLID) in whom no detectable cause could be identified in the coding regions of the X chromosome (chrX). Targeted sequencing of all chrX CRE identified six rare variants in five affected individuals that altered conserved bases in CRE targeting known XLID genes and segregated appropriately in families. Two of these variants, FMR1CRE and TENM1CRE, showed consistent site- and stage-specific differences of enhancer function in the developing zebrafish brain using dual-color fluorescent reporter assay. Mouse models were created for both variants. In male mice Fmr1CRE induced alterations in neurodevelopmental Fmr1 expression, olfactory behavior and neurophysiological indicators of FMRP function. The absence of another likely causative variant on whole genome sequencing further supported FMR1CRE as the likely basis of the XLID in this family. Tenm1CRE mice showed no phenotypic anomalies. Following the release of gnomAD 2.1, reanalysis showed that TENM1CRE exceeded the maximum plausible population frequency of a XLID causative allele. Assigning causative status to any ultra-rare CRE variant remains problematic and requires disease-relevant in vivo functional data from multiple sources. The sequential and bespoke nature of such analyses renders them time-consuming and challenging to scale for routine clinical use.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Genes Ligados a X , Genoma Humano , Discapacidad Intelectual Ligada al Cromosoma X/genética , Proteínas del Tejido Nervioso/genética , Elementos Reguladores de la Transcripción , Tenascina/genética , Animales , Animales Modificados Genéticamente , Encéfalo/metabolismo , Encéfalo/patología , Mapeo Cromosómico , Estudios de Cohortes , Modelos Animales de Enfermedad , Embrión no Mamífero , Exoma , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Frecuencia de los Genes , Genotipo , Humanos , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/metabolismo , Discapacidad Intelectual Ligada al Cromosoma X/patología , Ratones , Proteínas del Tejido Nervioso/deficiencia , Linaje , Fenotipo , Tenascina/deficiencia , Pez Cebra
15.
Genome Res ; 31(11): 1994-2007, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34417209

RESUMEN

Mutation in the germline is the ultimate source of genetic variation, but little is known about the influence of germline chromatin structure on mutational processes. Using ATAC-seq, we profile the open chromatin landscape of human spermatogonia, the most proliferative cell type of the germline, identifying transcription factor binding sites (TFBSs) and PRDM9 binding sites, a subset of which will initiate meiotic recombination. We observe an increase in rare structural variant (SV) breakpoints at PRDM9-bound sites, implicating meiotic recombination in the generation of structural variation. Many germline TFBSs, such as NRF1, are also associated with increased rates of SV breakpoints, apparently independent of recombination. Singleton short insertions (≥5 bp) are highly enriched at TFBSs, particularly at sites bound by testis active TFs, and their rates correlate with those of structural variant breakpoints. Short insertions often duplicate the TFBS motif, leading to clustering of motif sites near regulatory regions in this male-driven evolutionary process. Increased mutation loads at germline TFBSs disproportionately affect neural enhancers with activity in spermatogonia, potentially altering neurodevelopmental regulatory architecture. Local chromatin structure in spermatogonia is thus pervasive in shaping both evolution and disease.


Asunto(s)
Genoma Humano , Espermatogonias , Sitios de Unión , Secuenciación de Inmunoprecipitación de Cromatina , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Masculino , Mutación , Espermatogonias/metabolismo
16.
Nat Commun ; 12(1): 3127, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035299

RESUMEN

Cornelia de Lange syndrome is a multisystem developmental disorder typically caused by mutations in the gene encoding the cohesin loader NIPBL. The associated phenotype is generally assumed to be the consequence of aberrant transcriptional regulation. Recently, we identified a missense mutation in BRD4 associated with a Cornelia de Lange-like syndrome that reduces BRD4 binding to acetylated histones. Here we show that, although this mutation reduces BRD4-occupancy at enhancers it does not affect transcription of the pluripotency network in mouse embryonic stem cells. Rather, it delays the cell cycle, increases DNA damage signalling, and perturbs regulation of DNA repair in mutant cells. This uncovers a role for BRD4 in DNA repair pathway choice. Furthermore, we find evidence of a similar increase in DNA damage signalling in cells derived from NIPBL-deficient individuals, suggesting that defective DNA damage signalling and repair is also a feature of typical Cornelia de Lange syndrome.


Asunto(s)
Daño del ADN , Reparación del ADN , Síndrome de Cornelia de Lange/genética , Mutación , Animales , Proteínas de Ciclo Celular/genética , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Predisposición Genética a la Enfermedad/genética , Humanos , Ratones , RNA-Seq/métodos , Transducción de Señal/genética , Factores de Transcripción/genética
17.
Hum Mutat ; 42(4): 445-459, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33565190

RESUMEN

Thousand and one amino-acid kinase 1 (TAOK1) is a MAP3K protein kinase, regulating different mitogen-activated protein kinase pathways, thereby modulating a multitude of processes in the cell. Given the recent finding of TAOK1 involvement in neurodevelopmental disorders (NDDs), we investigated the role of TAOK1 in neuronal function and collected a cohort of 23 individuals with mostly de novo variants in TAOK1 to further define the associated NDD. Here, we provide evidence for an important role for TAOK1 in neuronal function, showing that altered TAOK1 expression levels in the embryonic mouse brain affect neural migration in vivo, as well as neuronal maturation in vitro. The molecular spectrum of the identified TAOK1 variants comprises largely truncating and nonsense variants, but also missense variants, for which we provide evidence that they can have a loss of function or dominant-negative effect on TAOK1, expanding the potential underlying causative mechanisms resulting in NDD. Taken together, our data indicate that TAOK1 activity needs to be properly controlled for normal neuronal function and that TAOK1 dysregulation leads to a neurodevelopmental disorder mainly comprising similar facial features, developmental delay/intellectual disability and/or variable learning or behavioral problems, muscular hypotonia, infant feeding difficulties, and growth problems.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Aminoácidos , Animales , Humanos , Discapacidad Intelectual/genética , Sistema de Señalización de MAP Quinasas , Ratones , Hipotonía Muscular , Trastornos del Neurodesarrollo/genética
18.
Nat Commun ; 12(1): 627, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33504798

RESUMEN

Over 130 X-linked genes have been robustly associated with developmental disorders, and X-linked causes have been hypothesised to underlie the higher developmental disorder rates in males. Here, we evaluate the burden of X-linked coding variation in 11,044 developmental disorder patients, and find a similar rate of X-linked causes in males and females (6.0% and 6.9%, respectively), indicating that such variants do not account for the 1.4-fold male bias. We develop an improved strategy to detect X-linked developmental disorders and identify 23 significant genes, all of which were previously known, consistent with our inference that the vast majority of the X-linked burden is in known developmental disorder-associated genes. Importantly, we estimate that, in male probands, only 13% of inherited rare missense variants in known developmental disorder-associated genes are likely to be pathogenic. Our results demonstrate that statistical analysis of large datasets can refine our understanding of modes of inheritance for individual X-linked disorders.


Asunto(s)
Discapacidades del Desarrollo/genética , Genes Ligados a X , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Variación Genética , Cromosomas Humanos X/genética , Femenino , Genes Recesivos , Humanos , Patrón de Herencia/genética , Masculino , Herencia Multifactorial/genética , Mutación/genética , Fenotipo , Caracteres Sexuales
19.
Genet Med ; 23(3): 571-575, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33149276

RESUMEN

PURPOSE: Automated variant filtering is an essential part of diagnostic genome-wide sequencing but may generate false negative results. We sought to investigate whether some previously identified pathogenic variants may be being routinely excluded by standard variant filtering pipelines. METHODS: We evaluated variants that were previously classified as pathogenic or likely pathogenic in ClinVar in known developmental disorder genes using exome sequence data from the Deciphering Developmental Disorders (DDD) study. RESULTS: Of these ClinVar pathogenic variants, 3.6% were identified among 13,462 DDD probands, and 1134/1352 (83.9%) had already been independently communicated to clinicians using DDD variant filtering pipelines as plausibly pathogenic. The remaining 218 variants failed consequence, inheritance, or other automated variant filters. Following clinical review of these additional variants, we were able to identify 112 variants in 107 (0.8%) DDD probands as potential diagnoses. CONCLUSION: Lower minor allele frequency (<0.0005%) and higher gold star review status in ClinVar (>1 star) are good predictors of a previously identified variant being plausibly diagnostic for developmental disorders. However, around half of previously identified pathogenic variants excluded by automated variant filtering did not appear to be disease-causing, underlining the continued need for clinical evaluation of candidate variants as part of the diagnostic process.


Asunto(s)
Bases de Datos Genéticas , Exoma , Frecuencia de los Genes , Humanos , Secuenciación del Exoma
20.
Brain ; 143(11): 3242-3261, 2020 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-33150406

RESUMEN

Heterozygous mutations in KMT2B are associated with an early-onset, progressive and often complex dystonia (DYT28). Key characteristics of typical disease include focal motor features at disease presentation, evolving through a caudocranial pattern into generalized dystonia, with prominent oromandibular, laryngeal and cervical involvement. Although KMT2B-related disease is emerging as one of the most common causes of early-onset genetic dystonia, much remains to be understood about the full spectrum of the disease. We describe a cohort of 53 patients with KMT2B mutations, with detailed delineation of their clinical phenotype and molecular genetic features. We report new disease presentations, including atypical patterns of dystonia evolution and a subgroup of patients with a non-dystonic neurodevelopmental phenotype. In addition to the previously reported systemic features, our study has identified co-morbidities, including the risk of status dystonicus, intrauterine growth retardation, and endocrinopathies. Analysis of this study cohort (n = 53) in tandem with published cases (n = 80) revealed that patients with chromosomal deletions and protein truncating variants had a significantly higher burden of systemic disease (with earlier onset of dystonia) than those with missense variants. Eighteen individuals had detailed longitudinal data available after insertion of deep brain stimulation for medically refractory dystonia. Median age at deep brain stimulation was 11.5 years (range: 4.5-37.0 years). Follow-up after deep brain stimulation ranged from 0.25 to 22 years. Significant improvement of motor function and disability (as assessed by the Burke Fahn Marsden's Dystonia Rating Scales, BFMDRS-M and BFMDRS-D) was evident at 6 months, 1 year and last follow-up (motor, P = 0.001, P = 0.004, and P = 0.012; disability, P = 0.009, P = 0.002 and P = 0.012). At 1 year post-deep brain stimulation, >50% of subjects showed BFMDRS-M and BFMDRS-D improvements of >30%. In the long-term deep brain stimulation cohort (deep brain stimulation inserted for >5 years, n = 8), improvement of >30% was maintained in 5/8 and 3/8 subjects for the BFMDRS-M and BFMDRS-D, respectively. The greatest BFMDRS-M improvements were observed for trunk (53.2%) and cervical (50.5%) dystonia, with less clinical impact on laryngeal dystonia. Improvements in gait dystonia decreased from 20.9% at 1 year to 16.2% at last assessment; no patient maintained a fully independent gait. Reduction of BFMDRS-D was maintained for swallowing (52.9%). Five patients developed mild parkinsonism following deep brain stimulation. KMT2B-related disease comprises an expanding continuum from infancy to adulthood, with early evidence of genotype-phenotype correlations. Except for laryngeal dysphonia, deep brain stimulation provides a significant improvement in quality of life and function with sustained clinical benefit depending on symptoms distribution.


Asunto(s)
Trastornos Distónicos/genética , N-Metiltransferasa de Histona-Lisina/genética , Adolescente , Adulto , Niño , Preescolar , Deleción Cromosómica , Estudios de Cohortes , Simulación por Computador , Estimulación Encefálica Profunda , Progresión de la Enfermedad , Trastornos Distónicos/terapia , Enfermedades del Sistema Endocrino/complicaciones , Enfermedades del Sistema Endocrino/genética , Femenino , Retardo del Crecimiento Fetal/genética , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/terapia , Humanos , Enfermedades de la Laringe/etiología , Enfermedades de la Laringe/terapia , Masculino , Mutación , Mutación Missense , Fenotipo , Calidad de Vida , Resultado del Tratamiento , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA